

 Week 10 tutorials Schrödinger equation and molecular orbitals for diatomic molecules 	<i>Next lecture</i> • Particle-on-a-ring model	 Learning outcomes Be able to explain why confining a particle to a box leads to quantization of its energy levels Be able to explain why the lowest energy of the particle in a box is not zero Be able to apply the particle in a box approximation as a model for the electronic structure of a conjugated molecule (given equation for <i>E_n</i>).
 (b) What is the <i>separation</i> between two adjacent levels? (<i>Hint</i>: Δε = ε_{n+1} - ε_n) (c) The π chain in a hexatriene derivative has L = 973 pm and has 6 π electrons. What is energy of the HOMO – LUMO gap? (Hint: remember that 2 electrons are allowed in each level.) (d) What does the particle in a box model predicts happens to the HOMO – LUMO gap of polyenes as the chain length increases? 	Practice Questions 1. The energy levels of the particle in a box are given by $\varepsilon_n = \hbar^2 n^2 \rho^2 / 2mL^2$. (a) Why does the lowest energy correspond to $n = 1$ rather than $n = 0$?	